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Abstract
Program state visualizations (PSVs) help programmers un-
derstand hidden program state like objects, references, and
closures. Unfortunately, existing PSV tools do not support
custom language semantics, which educators often use to
introduce programming languages gradually. They also fail
to visualize key pieces of program state, which can lead to
incorrect and confusing visualizations.

Theia, a generic PSV framework, uses formal abstract ma-
chine definitions to produce complete, continuous, and con-
sistent (CCC) PSVs.
To produce CCC visualizations with Theia, an educator

only needs to specify an abstract machine and optionally
customize the resulting web page, allowing her to visualize
custom language semantics without developing a language-
specific tool.

CCS Concepts • Software and its engineering→ Gen-
eral programming languages; • Social and professional
topics → History of programming languages.

Keywords abstract machine, notional machine, program
visualization, CS1, CS2, operational semantics

ACM Reference Format:
Josh Pollock, Jared Roesch, Doug Woos, and Zachary Tatlock. 2019.
Theia: Automatically Generating Correct Program State Visualiza-
tions. In Proceedings of the 2019 ACM SIGPLAN SPLASH-E Sympo-
sium (SPLASH-E ’19), October 25, 2019, Athens, Greece. ACM, New
York, NY, USA, 11 pages. https://doi.org/10.1145/3358711.3361625

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
SPLASH-E ’19, October 25, 2019, Athens, Greece
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6989-3/19/10.
https://doi.org/10.1145/3358711.3361625

1 Introduction
Novices and experts alike struggle to understand the runtime
states of their programs. Students find the most difficulty
with hidden state, like objects, closures, and references, that
do not have syntactic representations [Sorva 2013].
Program state visualization (PSV) tools, such as Python

Tutor [Guo 2013], Jeliot [Moreno et al. 2004], and Novis
[Berry and Kölling 2016], help students understand hidden
state by visualizing program traces. But these tools only
support a small set of languages and may produce misleading
PSVs of the languages they do visualize (Figure 1). As a result,
educators often resort to crafting PSVs by hand and are
unable to give automated tools to their students (Section 2).
In this paper we present Theia, a tool for creating PSVs

automatically from an abstract machine definition. Theia
allows instructors to quickly make new visualizations of
program executions and gracefully grow them as the set of
semantic features expands throughout a course. It uses for-
mal abstract machines expressed in the K framework [Roşu
and Şerbănuţă 2010] to automatically provide visualizations
for any instructor-defined language semantics (Section 3).
Based on prior work, we identify three key goals for

novice-oriented PSV tools. Such a tool should be:
(1) complete.1 It should visualize the entirety of each

intermediate program state.
(2) continuous.1 It should visualize transitions between

program states.
(3) consistent.2 It should visualize similar constructs across

languages similarly.
We refer to these criteria collectively as CCC. Though in gen-
eral, students and instructors may find it useful to summarize
and customize visualizations in ways that violate these prin-
ciples, we believe CCC is essential for a first introduction to
language semantics. Completeness and continuity ensure all
semantic information is present in the PSVs, and consistency
means a student can learn new semantic features using a
small, fixed visual vocabulary.
1[Levy et al. 2003]
2[Dragon and Dickson 2016]
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Figure 1. Python Tutor (top) does not visualize closures
completely, since it omits their saved environments. This
may lead a student to believe that the free variable x in add1
is bound to 5 instead of 1. Theia (bottom), with a similar
program in a functional language, visualizes closures com-
pletely. It is labeled with the primitives the Theia prototype
supports (see Section 4): 1 cell, 2 evaluation context, 3

expression sequence, 4a empty environment, 4b non-empty
environment, 5 store/heap, 6 boxed value. 7 is the differ-
ence between the two program states on either side. Note:
These visualizations were modified to conserve space.

Theia achieves completeness through the K framework
backend, which provides full information about runtime
program state (Section 3); continuity by visualizing one
transition at a time whereas most existing tools visualize one
state at a time (Section 3); and consistency by decompos-
ing program state into nearly-universal primitives that are
visualized identically across languages (Section 4).

Figure 1 provides an example of the Theia prototype’s
visualizations and demonstrates how a violation of CCC can
mislead novices. We illustrate how Theia generates visual-
izations that are CCC by construction through a series of
case studies that grow a functional language and visualize
an imperative one (Section 5).

Theia’s design is guided by Berry’s insight that formalized
notional machines are abstract machines [Berry 1990]. We
believe this connection is underappreciated in the literature,
because many researchers in the CS Education Research
(CER) and Programming Language (PL) communities are
unfamiliar with abstract machines (AMs) and notional ma-
chines (NMs), respectively. Attempting to narrow the gap
between the two communities, we describe NMs and AMs in
Section 2, highlighting their similarities. We then examine
the potential for NMs in PL and for AMs in CER in Section 7.

Theia serves as a first prototype for a larger research pro-
gram to build highly extensible program visualizers that
instructors can evolve flexibly to help students understand
hidden program state (Section 8). We discuss existing ap-
proaches to generic visualizations, CCC, and PSVs in Sec-
tion 6. Theia is publicly available at github.com/uwplse/theia
and hosted at theia.software.

2 Background
In this section we survey existing handcrafted visualiza-
tions and discuss their strengths and design tradeoffs (Sec-
tion 2.1). We then provide definitions and examples of no-
tional machines (NMs) and abstract machines (AMs) (Sec-
tions 2.2 and 2.3).

2.1 Handcrafted Visualizations
When instructors are not satisfied with automated PSV tools,
they often create visualizations manually.We briefly describe
techniques instructors use to create handcrafted visualiza-
tions. We focus on techniques for ML-like languages using
environment-based semantics. Few automated visualization
tools support these semantics, which leads instructors to
manually construct visualizations.

Figure 2 shows three common ways instructors currently
create PSVs: handwritten notes, slideware art, and inline text.
Handwritten notes are quick to produce, relatively flexible,
and easy for students to replicate; however, they can be dif-
ficult to read and animate. Instructors may also find that
handwritten traces do not match the polish of the rest of
their slides, and thus opt for a different method such as slide-
ware art. Creating custom slide graphics is time-consuming,
but provides more clarity than handwritten notes, because
slideware allows for animations and more precise, uniform
diagrams. Inline text offers a middle ground between the pre-
vious two strategies. Creating these visualizations takes less
time than slideware while achieving nearly the same polish.
Unfortunately, inline text only supports a limited range of
PSVs and may confuse students, because it does not clearly
distinguish between visualization and source code. All three
approaches require significant manual effort per example to
create clear, useful diagrams. Theia provides an automated
alternative aimed to scale effort per language.
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Figure 2. Slides from UC San Diego’s CSE 130, University
of Washington’s CSE 341, and Cornell University’s CS 3110,
respectively. They are examples of, resp., handwritten notes,
slideware art, and inline text.

2.2 Notional Machines
A notional machine (NM) is a construct in CER that describes
the machine a student must learn to manipulate with pro-
grams. In other words:

[A NM] is an idealized abstraction of computer hardware
and other aspects of the runtime environment of programs. . .
[that] serves the purpose of understanding what happens
during program execution. [Sorva 2013]

In CER, NMs are used to compare programming paradigms
[Sajaniemi andKuittinen 2008], identifymentalmodels within
a single paradigm [Schulte and Bennedsen 2006; Sorva 2013],
or justify the construction of a PSV [Berry and Kölling 2016].

Though NMs serve an important role in these analyses, they
are rarely fully described. NM descriptions frequently gloss
over subtleties of state transitions and instead focus solely on
the components of the state [Krishnamurthi and Fisler 2019].
While this approach may be acceptable for coarse-grained
analysis, it is too vague for finer-grained comparisons of
language choices within the same paradigm, e.g., between
call-by-value and call-by-name and between semantically
similar languages like C# and Java; Ruby and Python; and
F# and OCaml.

Gries and Gries provide one of the most complete descrip-
tions of a NM. They describe two pedagogical Java memory
models including both state and transition rules. Their expla-
nations, however, remain informal since they are presented
in the form of instructions for a student handwriting a pro-
gram trace. This conflates the language semantics with the
visualization. One must reason about the underlying NM as
well as the visualizations and metaphors used to communi-
cate it. When the descriptions are combined, this reasoning
becomes unnecessarily difficult.

2.3 Abstract Machines
An abstract machine (AM) is a common construct in PL re-
search. An AM for a language, L, is a state machine (not
necessarily finite) with input language L. A formal descrip-
tion of an AM comprises a machine language, L; a description
of the AM’s state (e.g., a program counter, stack, and heap);
and transition rules, which use instructions in L to manipu-
late the AM’s state. AMs are frequently designed to facilitate
formal reasoning or language implementation. They are not
limited to concrete execution, but also play a useful role in
specifying abstract semantics used in abstract interpreta-
tion. AM transition rules are often defined using operational
semantics.1
Comparing the definitions of NMs and AMs, one may

wonder how they are related. Berry answered this question
nearly 30 years ago in his dissertation, where he describes
how to generate program animations from formal semantics:

The abstract machine of the operational semanticist is simi-
lar to the notional machines used to teach programming. . . .
The difference is one of abstraction; teachers and students
want intuitive designs that illustrate the main points of a
design, while operational semanticists want precise and de-
tailed definitions. Thus a notional machine is a simple view
of a semantic abstract machine. [Berry 1990]

In other words, while both NMs and AMs attempt to cap-
ture abstract models of a machine, they have different goals.
Educators and education researchers want machines that
aid learning, while programming language engineers and
researchers want machines with precise semantics, useful
for automated analysis and proof. We argue in Section 7 that
this gulf, while natural, is unnecessary and discourages new
research questions and discoveries.
1See http://pages.di.unipi.it/corradini/Didattica/PR2-B-14/OpSem.pdf for
an introduction to operational semantics.
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Figure 3. An overview of Theia’s architecture with the K Framework backend. The user provides a formal language semantics
in K (written once, usu. by an instructor) and a program in that language. Theia visualizes the execution trace of her program.

3 Architecture
In this section we discuss Theia’s architecture, and explain
how our tool achieves completeness and continuity.
Figure 3 provides an overview of Theia’s architecture.

Theia is structured as a compiler. It has an intermediate
representation (IR) and currently supports a single debugger
backend—the K framework—and a single visual frontend—
HTML.
The K Framework provides a state logger that produces

JSON encodings of ASTs representing each state of a pro-
gram’s execution. In Theia’s current implementation, pro-
grams are assumed to terminate and all states are logged
ahead of time. Theia decodes these JSON files into an initial
kNode AST that is close to K’s own AST. This representation
does not distinguish between some components that are vi-
sually separated in the final output such as expressions and
complex values. Theia performs a compilation pass to sepa-
rate and reorganize these components, producing theiaIR,
which is designed to support Theia’s visualizations.

Theia’s visualizations are transition-oriented rather than
state-oriented (see Figure 4). Unlike other generic PSV tools,
such as Python Tutor, that present the user with a single state
at a time, Theia presents the user with a transition between
two states. We visualize this as the before and after states
connected by a visual difference between them. This design
choice is motivated by several in-person conversations on
the strengths and weaknesses of Python Tutor and further
corroborated by observations of anonymous users of the site.
We found that users often thrash back and forth between
isolated states to determine what and how the state changes
over time. This is necessary in Python Tutor, because the
only continuity the tool provides is an indication of the
last line that was executed and the next line to be executed.
Theia’s ability to show deltas between neighboring states of
an execution trace provides continuity.

3.1 Backend: K State Logging
The K Framework is a tool for formalizing existing languages
and experimentingwith new syntax and semantics [Roşu and
Şerbănuţă 2010]. Researchers have used K to formalize large
subsets of real-world languages including Java, x86-64, C, and
JavaScript [Bogdănaş and Roşu 2015; Dasgupta et al. 2019;

Hathhorn et al. 2015; Park et al. 2015]. K generates a parser,
interpreter, state logger, symbolic executor and many other
tools automatically from a K specification. This specification
includes a grammar, a configuration describing the runtime
state of the program, and expressive rewrite rules. One may
think of a K specification as an AM where the grammar
describes the machine language, the configuration describes
the machine state, and the rewrite rules describe the state
transitions. K is a suitable backend for Theia, because it
generates a state logger and maps closely to AMs.
Theia uses K’s state log functionality to obtain program

traces. K’s log provides complete information about all in-
termediate states of the specified AM, which Theia uses to
construct complete visualizations. The state logger can also
track which transition rules were applied, perform symbolic
execution, and trace rules nondeterministically. Theia cur-
rently only uses information about the intermediate states
and only supports the concrete execution of terminating,
single-threaded, deterministic programs that do not accept
user input. These challenges are not fundamental to Theia’s
approach, but rather matters of engineering effort.

3.2 Frontend: ReasonReact
Theia is written in ReasonML, a syntactic variant of OCaml,
and renders theiaIR using ReasonReact, a ReasonML imple-
mentation of the React web framework. ReasonML is a pow-
erful functional language well-suited to building a compiler
that also provides straightforward web integration. Theia
implements visualization deltas with react-visual-diff,
a library that highlights the difference between two React
components. The ability to reuse existing React libraries is
an important advantage of using ReasonReact.

4 Visualizations of Language Constructs
Many AMs comprise just a few simple state components.
By visualizing each of these components independently and
in an AM-agnostic way, Theia provides consistent visual-
izations. These state components include cell (§4.1), evalua-
tion context (§4.2), expression sequence (§4.3), environment
(§4.4), store/heap (§4.5), and boxed value (§4.6).

AM states often contain components such as program
counters and pointers; however, we did not implement these
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in our Theia prototype. Though they are useful, they do not
significantly add to the demonstration of the core capabili-
ties of our tool. Instead of program counters our case studies
(Section 5) rely on evaluation contexts and expression se-
quences, and reuse integers instead of a separate pointer
type. We leave the implementation of program counters and
pointers to future work.

Theia allows users to customize its visualizations. We pro-
vide an example customization for evaluation contexts in
Section 5.1. For the other components, we describe Theia’s
default visualizations. In all cases, our design rationale is to
be conservative. We borrow from existing, common visu-
alization techniques to create visualizations that are more
immediately understandable to those familiar with similar
PSVs. This similarity is a form of consistency across tools,
something that previous general AM visualizations have
not prioritized (see Section 6). For visual examples of these
components, see Section 5.

4.1 Cell
A K configuration is composed of multiple cells, or complex
state components, which models most existing AMs. For
example, the SECD abstract machine has four cells: Stack,
Environment,Control, andDump [Landin 1964]. Its spiritual
successor, the CEK abstract machine, has three cells:Control,
Enivronment, and Kontinuation [Felleisen and Friedman
1986]. We visualize cells as labeled boxes, because we found
this visually distinguished between cells even when there
were many of them or they were arbitrarily nested. This is
similar to visualizations such as Jeliot 3, which uses labeled
regions to separate methods, constants, evaluating expres-
sions, and instances [Moreno et al. 2004].

4.2 Evaluation Context
Researchers use several different visualizations of evaluation
contexts. Our prototype implementation of Theia supports
two: square brackets as in Danvy and Filinski and underlines
as in Pareja-Flores et al. and Whitington and Ridge. The
latter papers do not demonstrate nested evaluation contexts,
so we opt for a stack of underscores. Evaluation contexts are
presented in a different color than black to help them stand
out when interspersed with program text.

4.3 Expression Sequence
Evaluation contexts save computations for later, but the K
framework uses the KSequence AST node to save not just
evaluation contexts, but arbitrary data structures as well.
In Theia, saved data structures are separated by vertical
whitespace. This technique is a generalization of call stack
visualizations that present the user with a list of stack frames
that grows downwards [Guo 2013; Moreno et al. 2004].

4.4 Environment
An environment is amap between identifiers (variable names)
and values. Theia visualizes an environment as a 2-column
table. This is a common visual representation [Guo 2013].

4.5 Store/Heap
In the Theia prototype, a heap is also rendered as a 2-column
table from identifiers to values. However, the identifiers are
references into the heap. This is a tradeoff: using a table is
complete, because it presents the value of each pointer to the
user, but it is less consistent with existing visualizations that
use arrows and an unstructured collection of boxes. These
visualizations emphasize that, in contrast to a stack, a heap
is a graph with data for nodes and pointers for edges.

4.6 Boxed Value
Visualizing complex values separately from expressions is
crucial as it hints to the user when evaluation has stopped
and distinguishes between code and data. This subtlety is im-
portant for languages that employ macros or runtime values
that store code (e.g., closures and objects). Based on exist-
ing visualizations of lists, objects, and other compound data
structures, Theia visualizes a complex value as a labeled box
containing a collection of boxes [Guo 2013; Moreno et al.
2004]. This provides visual separation between the different
components of the value and provides strong visual separa-
tion of complex values from other types of runtime state.

Theia’s visualizations comprise visual primitives inspired
by existing PSVs. By visualizing these primitives in a language-
agnostic way, Theia provides consistency across languages.

5 Case Studies
We evaluate the Theia prototype with a series of case stud-
ies. Sections 5.1 through 5.4 explore how to grow a small
functional language in Theia while preserving CCC. Section
5.5 shows how Theia’s visualizations extend consistently to
the imperative paradigm.

To further demonstrate that instructors need only specify
a semantics to produce a visualization, our case studies are
based on semantics and programs written by K framework
developers before the creation of Theia.

5.1 Term Rewriting Lambda Calculus with
Arithmetic Expressions

When first introducing students to functional programming,
an instructor may wish to begin with a lambda calculus
extended with simple arithmetic expressions. The instructor
picks a term rewriting semantics, allowing her to delay the
introduction of an environment, a store, and closures without
sacrificing the expressiveness of the language.
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We define such a language in K. For familiarity, we present
each language semantics in the case studies as a BNF gram-
mar and operational semantics instead of the K source code it-
self. We briefly explain how one would specify this language
in K. One of the syntax rules for our language is written as
syntax Exp ::= Val

| Exp Exp [strict, left]
| "(" Exp ")" [bracket]

This provides the syntax for expressions. Notice the an-
notations to the right of the rules. left and bracket are
directives for the parser. strict tells K that an expression’s
subexpressions should be evaluated before it can be used in
a transition rule. This annotation also generates evaluation
context rules automatically.

One of the transition rules is
rule (lambda X:KVar . E:Exp) V:Val => E[V / X]

This rule specifies lambda application. Note that, for per-
formance reasons, K’s variable substitution module is not
implemented as a K specification, meaning it is opaque to
Theia. One could write substitution explicitly in K to include
them in the visualization. We now provide a formal presen-
tation of this language in BNF and operational semantics:

Val ::= KVar
| λ KVar . Exp
| Int
| Bool

Exp ::= Val
| Exp Exp
| ( Exp )
| Exp * Exp
| Exp / Exp
| Exp + Exp
| Exp <= Exp

Lambda Application

(λ X : KVar . E : Exp) (V : Val)

E[V /X ]

*

(I1 : Int) * (I2 : Int)

I1 ∗ I2

/

(I1 : Int) / (I2 : Int)

I1/I2

+

(I1 : Int) + (I2 : Int)

I1 + I2

<=

(I1 : Int) <= (I2 : Int)

I1 ≤ I2

Figure 4 shows one transition in the execution of a sim-
ple arithmetic program written in our first language. It is
visualized with two different styles of evaluation contexts
based on those found in existing literature and visualiza-
tion tools [Danvy and Filinski 1989; Pareja-Flores et al. 2007;
Whitington and Ridge 2017]. In the first style, square brack-
ets are nested until the innermost subexpression matches
a rewrite rule. In the second style, a downward-growing
stack of underlines represents this nesting. Each visualiza-
tion style is specified in about five lines of ReasonML. Theia
shows not just the before and after states of the program,
but also a visual delta between the two states. In this case,

the subexpression 2 * 3 inside the innermost evaluation
context is rewritten to 6. Theia presents the before and after
states completely. It shows all nested evaluation contexts.
The delta between these states provides continuity.

Figure 4. A step in the execution of (1 + (2 * 3)) / 4
in a rewrite-based lambda calculus presented with two dif-
ferent visual styles for evaluation contexts. Theia allows a
user to customize the visualization of each primitive com-
ponent. The styles above were each specified in about five
lines of ReasonML. In this semantics, evaluation contexts
are added until a rewrite rule can be applied to the focused
subexpression. Notice how Theia visualizes semantics. It
is transition-oriented, showing before and after states com-
pletely as well as a visual delta between the two states,
which provides continuity.

5.2 Switching to an Environment-Based Functional
Language (Closures)

After introducing students to a rewrite-based lambda calcu-
lus, an instructor may want to switch to an environment-
based model. Environments provide an intuitive interpreta-
tion of “let” bindings, which may be thought of as adding to a
local collection, or environment, of bindings. When switching
to this model, the instructor must introduce closures to pre-
serve the rewrite-based model’s lexical scoping rules. Lamb-
das evaluate to closures, which capture both the lambda
and the relevant bindings in the environment where the
lambda is defined. Existing visualizations either do not need
to visualize closures because they use rewrite-based seman-
tics [Pareja-Flores et al. 2007; Whitington and Ridge 2017]
or fail to visualize environments completely [Guo 2013]. In
contrast, Theia automatically supports closure visualizations.
In our example semantics, a closure is visualized as a boxed
value with three components: the saved environment, the
name of the lambda’s input, and the lambda’s body.

The environment-based lambda calculus AM uses multiple
pieces of state unlike the rewrite-based one. When the AM
state consists of more than one component, K requires the
user to define the AM state explicitly and specify the initial
position of the source program in that state. The configura-
tion for this language is: {k: Exp, env: Map, store: Map}
and the program is initially placed in the k cell. The k cell
stores the expression under evaluation, its evaluation con-
texts, and saved data structures; env is a map from variables
to pointers; and store is a map from pointers to values. We
add the following rules to our language, replacing the value
syntactic category and lambda transition rules entirely.
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Val ::= closure(MAP, KVar, Exp)

Exp ::= · · ·

| if Exp then Exp else Exp [strict(1)]
| let KVar = Exp in Exp

Lambda to Closure

k : λ X : KVar . E . . .

env : ρ

k : closure(ρ, X , E)

Let

let X = E in E′

(λ X . E′) E

If True

if true then E else _

E

If False

if false then _ else E

E

Restore Saved Env.

k : _ : Val⇝ ρ . . .

k : _ : Val . . .

env : ρ

Variable Lookup

k : X . . .

env : ρ(X ) = N
store : σ (N ) = V

env : V . . .

Closure Application

k : closure(ρ, X, E) (V : Val) . . .
env : ρ′

store : σ

k : E ⇝ ρ′ . . .
env : ρ[X ← N ]
store : σ [N ← V ]
N is a fresh integer

Note that strict(1)means we only require the first argu-
ment of if to be evaluated before continuing. This allows if
to short-circuit.⇝ denotes a sequenced expression. These
sequenced expressions are saved for later, usually for after
the first expression has been fully evaluated.
Figure 1 shows that Theia directly supports visualizing

multiple cells and complex runtime values like closures. The
state is visualized completely without any additional effort.
Notice the visualization also includes an evaluation context.
Since the choice of evaluation context visualization is or-
thogonal to the rest of the visualization, the instructor only
has to pick the visualization once and is guaranteed to have
a consistent visualization across language semantics.

5.3 Adding Recursive Bindings
The instructor now adds recursive bindings to her language
by extending the definitions from the previous subsection:

Exp ::= · · ·

| letrec KVar KVar = Exp in Exp
| mu KVar . Exp
| muclosure(Map, Exp)

Mu to Muclosure

k : mu X . E . . .

env : ρ
store : σ

k : muclosure(ρ[X ← N ], E) . . .

env : ρ
store : σ [N ← muclosure(ρ[X ← N ], E)]
N is a fresh integer

Letrec

letrec F : KVar X = E in E′

let F = mu F . λ X . E in E′

Muclosure Application

k : muclosure(ρ, E) . . .

env : ρ′

k : E ⇝ ρ′ . . .
env : ρ

Again the visualization extends without any extra user
effort. Notice muclosures naturally create a continuation
stack by saving continuations with ⇝. In this semantics,
Theia visualizes recursion similarly to Technique #1 in Lewis.

Figure 5. A single state in the execution of letrec f x =
if x <= 1 then 1 else (x * (f (x + -1))) in (f
3) in an environment-based lambda calculus with letrec.
Theia creates expression sequences when a semantics saves
terms other than evaluation contexts. Here the expression
sequence shows recursive calls waiting for values to fill par-
tially evaluated expressions. It also stores old environments,
which are restored when the current computation returns.
Note: This visualization was modified to conserve space.

5.4 Extending with callcc

Finally, the instructor extends her language with callcc,
a complex control-flow construct, by adding the following
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grammar and transition rules. Note that the K Framework
provides special semantics for the variable K. It refers to an
evaluation context.

Exp ::= · · ·

| callcc Exp [strict]

Val ::= · · ·

| cc(MAP, K)

Save Current Context

k : callcc( V : Val)⇝ K
env : ρ

k : V cc(ρ, K)⇝ K
env : ρ

Restore Context

k : cc(ρ, K) V : Val⇝ _
env : _

k : V ⇝ K
env : ρ

Theia’s IR is expressive enough to accommodate compli-
cated structures such as callcc without modification. Code,
environments, and evaluation contexts can appear as arbi-
trary subexpressions in the IR. In contrast, frameworks such
as Python Tutor have special support for constructs like clo-
sures. Figure 6 shows a Theia visualization of a transition in
a program that uses callcc.

5.5 An Imperative Language
We began this section by examining functional languages,
because few PSV tools support them and their definitions do
not require many rules. Although visualizations of functional
languages are interesting to study, Theia is not limited to
this paradigm. It makes no assumptions about the number or
arrangement of cells in an AM configuration nor does it make
restrictive assumptions about runtime data structures. To
exemplify this, we run Theia on a small imperative language
with mutable state and looping constructs.

Figure 7 shows a single transition of an imperative pro-
gramwhich sums the numbers 5 to 1 using a while loop. Even
though this example is imperative, it still uses an expression
sequence and a cell for mapping variables to values. These
visual elements are consistent with those in the functional
languages we visualize above.

6 Related Work
We discuss existing generic tools for AMs that satisfy CCC
and existing specialized tools for creating diagrams similar
to those already used by teachers and students. We believe
Theia is the first visualization framework to provide both
CCC and a platform for matching existing visualizations.

6.1 Generic/AM-Based Visualization Frameworks
There are several existing attempts to provide CCC visual-
izations of abstract machines, though they did not evaluate
themselves with those criteria explicitly.

Figure 6. A visualization of let x = 1 in ((callcc λ
k. (let x = 2 in (k x))) + x). Theia’s visualizations
adapt easily to complex constructs like callcc. Even though
callcc’s transitions change several parts of the runtime
state, Theia’s continuity makes the delta visible. cc’s saved
environment replaces the current one, and its argument is
placed in the evaluation context in the expression sequence.

Both PLT Redex [Klein et al. 2012] and the K Framework
[Roşu and Şerbănuţă 2010] provide DSLs for specifying op-
erational semantics. To debug these semantics, they also pro-
vide visualizations of AM execution. These visualizations,
while CCC, are designed for users of their respective tools
and thus do not match existing classroom visualizations or
allow for easy visualization extensibility. Moreover, the K
Framework’s visualization tools are currently unmaintained,
which prevented a direct comparison with Theia.

GANIMAM [Diehl and Kunze 2000] is a web-based AM vi-
sualizer that appears to provide completeness, some form of
continuity via interactive animations, and consistency. GAN-
IMAM only supports registers, heaps, stacks, and objects and
does not appear to handle evaluation contexts or continua-
tions. We were unable to further evaluate this tool, because
it does not seem to be maintained or publicly available.

Berry’s thesis discusses the relationship between AMs and
NMs and also how to generate program state animations au-
tomatically from an operational semantics [Berry 1990]. His
work helped inspire Theia’s design. We were not able to fully
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Figure 7. A visualization of the imperative program: int n, sum; n = 5; sum = 0; while (!(n <= 0)) { sum = sum +
n; n = n + -1; }. Since Theia’s visualizations are based on a set of nearly-universal AM primitives, Theia supports multiple
paradigms. This example employs cells, an expressions sequence, and an environment mapping variables to values.

Table 1. This table summarizes related work. Theia is the first tool to provide CCC visualizations inspired by common existing
PSVs used in classrooms. This should allow Theia to both provide correct visualizations and also, eventually, achieve wider
adoption than previous CCC tools. (1) PLT Redex is used by some, but is not widely adopted. (2) Python Tutor supports a
few languages, but does not extend to AMs with arbitrary configurations. (3) PLTutor is complete with respect to a reference
interpreter, but is not continuous. It supports a single language and so cannot be consistent across languages by default.

Tool Broad Adoption Generic Complete, Continuous, Consistent Inspired by Popular PSVs
Theia

PLT Redex —(1)
native K viz
GANIMAM

Berry
Python Tutor —(2)

PLTutor —(3)

evaluate Berry’s tool, because it does not appear to be pub-
licly available. Though his dissertation contains screenshots
of the tool, it is unclear whether it supports data structures
like maps or boxed values. Additionally, Berry finds oper-
ational semantic steps insufficient and instead introduces
animation steps to provide more detailed state transitions
such as showing steps that focus on subexpressions before
performing a rewrite. In contrast, Theia relies only on oper-
ational semantics, but achieves similar step granularity to
Berry’s tool. This is because evaluation contexts can serve
the same role as Berry’s animation steps, but can be specified
as additional rules in an operational semantics. This more
fully decouples formal semantics from visualizations.

6.2 Externally Consistent, Language-Specific Tools
Several existing tools emphasize external consistency with
existing visualizations or high-fidelity user interactions.
Online Python Tutor is a web-based visualization tool

for popular languages like Java, C, C++, JavaScript, and
Ruby [Guo 2013]. According to its website, Python Tutor
has reached over five million users, making it one of the
most widely-used PSV tools. Theia’s architecture was partly
inspired Python Tutor’s, which has an IR for program states

and relies on debuggers to produce traces for the visual-
izer. Unfortunately, while informative for many programs
in popular languages, Python Tutor does not visualize con-
structs such as closures completely (see Figure 1), provides
continuity only in the form of a previous and next program
counter, and fails to visualize closures consistently across
languages. Additionally, Python Tutor’s IR only provides
ad hoc support for closures and other advanced features,
making consistently growing languages difficult.2
PLTutor [Nelson et al. 2017] is a JavaScript PSV tool in-

tended to be a self-contained language teaching tool. It has
instruction-level state transitions, explanations of each tran-
sition, and periodic quizzes on program state. A full tutoring
system is beyond the scope of Theia. We share PLTutor’s
creators’ belief that a PSV tool must support fine-grained
transition rules; however, unlike the creators, we assert that
abstract machines are more suitable than implementation-
level interpreters for specifying such semantics. Teaching
and understanding a language requires multiple semantics
and multiple levels of abstraction. Implementation-level in-
terpreters do not provide this flexibility, because they expose

2https://git.io/JeYmu describes Python Tutor’s execution trace format.
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implementation-specific optimizations and representations
that are sometimes better ignored.

Finally, several complete and continuous visualizations of
functional languages have been developed. We highlight two
examples: the Racket Stepper [Findler 2014] and LambdaLab
[Sainati and Sampson 2018]. Racket’s developers provide
pedagogical subsets of the language, and the Racket Stepper
supports the beginner and intermediate subsets. Racket’s
growing language subsets partly inspired our case studies.
The Racket Stepper, while useful, does not match existing
visualizations nor generalize to other languages. LambdaLab
is a web-based interactive tool for visualizing the execu-
tion of lambda calculus with macros and different evalu-
ation strategies. LambdaLab’s continuity is stronger than
Theia’s, because it shows beta reduction explicitly by con-
necting function arguments to their substitution sites; how-
ever, LambdaLab is not generic and only supports constructs
like let bindings and data types using macros.

7 Discussion
The insight that abstract machines are formalized notional
machines enabled Theia’s development, but its impact is not
limited to visualization. The key advantage of using a formal
AM definition is that it is complete and machine-readable.

The completeness of formal machine descriptions allows
for more precise comparisons of languages both between
and within programming paradigms. Existing NM descrip-
tions are imprecise and ill-defined (see Section 2.2). This is
acceptable when doing informal comparison across language
paradigms, but makes intra-paradigm comparison difficult.
Complete descriptions make fine-grained language compar-
isons possible and rigorous when compared the informal
analyses performed today. Completeness also allows one to
empirically evaluate PSVs. For example, though Levy et al.
introduce completeness and continuity for their design ra-
tionale, the authors do not explicitly evaluate Jeliot on these
principles. We speculate this is because CCC cannot be for-
mally stated without a complete characterization of a NM. In
contrast, an AM description allows one to reason precisely
about the state and transitions that must be present to have
a complete and continuous visualization. It is possible one
could formally phrase these properties and then formally
prove that an AM-based visualization satisfies CCC.

Machine-readability is also important, because it enables
generic, automated tools to manipulate and reason about
NMs. For example, it enabled Theia to automatically gener-
ate visualizations. PLTutor offers another example. It uses
path coverage of an interpreter to produce a complete set of
educational examples. This approach could be generalized
to an interpreter for an arbitrary AM.
Furthermore, if students learn some precise, but possi-

bly incorrect, model of a language’s semantics, it should be
possible to infer this model given a student’s answers to

questions and handwritten traces of example programs. If
one uses formal language descriptions, this inference could
be automated, perhaps using insights from Saarinen et al.
to generate informative questions and answers and from
Feldman et al. to infer student misconceptions.

Thus complete descriptions allow one to reason precisely
about language semantics, and machine-readable descrip-
tions allow for new, more flexible educational tools.

8 Future Work and Conclusion
What’s next for Theia? Though we believe abstract machines
can provide a lingua franca for PL and CER researchers, to
the best of our knowledge no formal semantics accurately
captures the way most students, and even programmers
in general, visualize and reason about program execution
mentally or manually. Most abstract machines are designed
for semantic clarity when performing proofs or specifying a
language, but not for visualizations or education. For Theia
to gain adoption in classrooms, one must construct AMs that
capture existing mental models.
While visualizing program state completely is useful for

understanding the low-level details of a language semantics,
reasoning aboutmore complex programs requires visualizing
abstractions of program state that highlight or summarize
relevant information and hide distracting details.

In order to scale, Theia needs to support not only generic
AM frameworks like K, but also language-specific debuggers
to provide PSVs of implementation-level semantics. Addi-
tionally, though Theia provides better continuity than many
existing PSVs, its IR does not encode state transitions. This
information would enable higher-fidelity transitions that use
animations and color similar to those found in tools such as
Sainati and Sampson and Woos et al.
By combining insights from PL and CER, Theia should

enable instructors to more easily prototype PSVs spanning a
larger range of language constructs than previous tools.
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