Josh Pollock | CV

2 Earhart St., Unit 703 – Cambridge, MA 02141 **€** (650) 309-3662 • ☑ jopo@mit.edu • ③ joshmpollock.com programming languages + visualization = augment thought with computers

Research Statement

Computers can augment human capabilities, but to do so we need to bridge the gap between machinereadable and human-centered interfaces. Drawing on my experience in programming languages, I approach this gulf by designing domain-specific languages (DSLs). I view a DSL as a powerful human-computer interface that provides both expressiveness and simplicity via compositional language primitives. **Areas of interest:** Human-computer interaction, programming languages, visualization, compilers.

Education

Massachusetts Institute of Technology Cambridge, MA September 2022 - Present Ph.D. Computer Science Advised by Arvind Satyanarayan Massachusetts Institute of Technology Cambridge, MA M.S. Computer Science September 2020 - May 2022 Advised by Daniel Jackson Coursework: Advanced Algorithms, Foundations of Program Analysis, Shape Analysis, Advances in Computer Vision **University of Washington** Seattle, WA September 2016 - June 2020 B.S. Computer Science with College Honors - Magna Cum Laude Thesis: "Sidewinder: Designing Correct Program State Visualizations" **Highlighted Coursework:**

<u>CS Theory</u>: (Grad) Programming Languages, (Grad) Network Verification and Synthesis, Programming Languages <u>CS Design</u>: Software Engineering, Human-Computer Interaction, Data Visualization

CS Systems: (Grad) Systems for Machine Learning, Distributed Systems, Operating Systems, Security

Mathematics: Numerical Analysis (2 qtr), Differential Geometry (2 qtr), Topology, Honors Accel. Adv. Calculus (3 qtr)

Publications

Conference

• Zong, J., Pollock, J., Wootton, D., and Satyanarayan, A. Animated vega-lite: Unifying animation with a grammar of interactive graphics. *IEEE Transactions on Visualization and Computer Graphics* (2022)

Workshop

- Zong, J., Pollock, J., Wootton, D., and Satyanarayan, A. Design spaces of domain-specific languages: Comparing and contrasting approaches in pl and hci, 2021
- Pollock, J., Oh, G., Jun, E., Guo, P., and Tatlock, Z. The essence of program semantics visualizers: A three-axis model, 2020
- Pollock, J., Roesch, J., Woos, D., and Tatlock, Z. Theia: Automatically generating correct program state visualizations. In *Proceedings of the 2019 ACM SIGPLAN Symposium on SPLASH-E* (New York, NY, USA, 2019), SPLASH-E 2019, ACM, pp. 46–56
- Roesch, J., Lyubomirsky, S., Weber, L., Pollock, J., Kirisame, M., Chen, T., and Tatlock, Z. Relay: A new ir for machine learning frameworks. In *Proceedings of the 2nd ACM SIGPLAN International Workshop on Machine Learning and Programming Languages* (New York, NY, USA, 2018), MAPL 2018, ACM, pp. 58–68

ArXiv

 Roesch, J., Lyubomirsky, S., Kirisame, M., Weber, L., Pollock, J., Vega, L., Jiang, Z., Chen, T., Moreau, T., and Tatlock, Z. Relay: A High-Level Compiler for Deep Learning. *arXiv e-prints* (Apr 2019), arXiv:1904.08368

Blog Posts, Articles, and Misc. Writing

- "Formality Considered Harmful"
- "A Very, Very Tiny Grammar of Graphics"
- o "Writing a Research Paper: A Meta-Guide"
- "E-Graphs Are Minimal Deterministic Finite Tree Automata (DFTAs)" with Altan Haan
- "Fast(ish) Algorithms for Integer Programming: The Lost Lecture of 6.854" with Logan Weber

Research

Bluefish

0 MIT Research Assistant

Can we create a grammar of discrete diagrams?

- First author. Anticipated submission: Q1 2023
- Implementing an embedded DSL in TypeScript for declaratively specifying custom graphic representations for structured data like chemical pathways and program states.
- Generalizing the concept of a visual encoding to include not just data object-channel mappings but also mappings from data relations to perceptual groups of marks.
- Extending UI framework layout techniques from tree structures to DAGs to support overlapping perceptual groups.

Animated Vega-Lite

MIT Research Assistant

Can we extend a grammar of interactive graphics with data-driven animation?

- Co-first authored "Animated Vega-Lite: Unifying Animation with a Grammar of Interactive Graphics" at IEEE VIS '22.
- Co-first authored "Design Spaces of Domain-Specific Languages" at PLATEAU '21 based on initial work.
- Extended existing channel and selection concepts to support switching btw. static, interactive, and animated charts.
- Allow users to create animated Gapminder, bar chart races, and bird migrations in Vega-Lite.
- Wrote a compiler for custom Vega-Lite extensions into Vega.

Penrose Shape Queries

0 CMU Visiting Student Researcher

Can we identify a set of primitive functions on geometric shapes that support the layout of mathematical diagrams?

- Explored layout optimization techniques including laying out shapes one at a time and multi-resolution layout.
- Pioneered a DSL of shape queries, e.g. Hausdorff distance, to define relationships between objects in math diagrams.

Sidewinder

0 PLSE Research Assistant

Sidewinder is a tool that facilitates the construction of program semantics visualizers.

- First-authored "The Essence of Program Visualizers: A Three-Axis Model" at PLATEAU '20.
- Identified three key pieces of information for explaining program semantics, transition systems, and state machines.
- Prototyped a visualization and animation DSL for explaining program semantics.
- Sketched a low-level framework for declarative diagram layout.
- Visualized small functional and imperative languages.

Theia

PLSE Research Assistant

Theia is a tool that uses abstract machines to create correct-by-construction visualizations of program execution.

- First-authored "Theia: Automatically Generating Correct Program State Visualizations" at SPLASH-E '19.
- Creating framework for visualizing language semantics to automate existing handcrafted diagrams.
- Developing intermediate representations for abstract machines and their visualizations.
- Rewrote a subset of SML to visualize programs.

TVM and Relay

PLSE and SAMPL Researcher Assistant

TVM is an open-source end-to-end deep learning compiler stack employed by frameworks such as PyTorch and MXNet.

- Co-authored "Relay: A High-Level Compiler for Machine Learning", in submission.
- Co-authored "Relay: A New IR for Machine Learning Frameworks", which appeared in MAPL '18.
- Developed Python frontend compiler and Relay text format to enable better developer experience.

Massachusetts Institute of Technology

Massachusetts Institute of Technology

September 2020 - Present

February 2021 - October 2022

University of Washington

November 2019 - September 2020

University of Washington

University of Washington

January 2019 - October 2019

January 2018 - June 2019

Carnegie Mellon University

June 2021 - August 2021

Lean Theorem Prover

PLSE Researcher

- Designed and implemented a transpiler in OCaml/ReasonML to transfer libraries from Cog to Lean.
- Contributed to Lean's open source codebase. Learned graduate-level dependent type theory and cutting-edge software verification tools.

Service

0 2022

- HCI Graduate Student Representative
- Social Organizer
- 0 2021
 - Graduate Application Coach
 - Student Volunteer
 - HCI Graduate Student Representative
 - Social Organizer and Website Maintainer
- o 2019
- Teaching Assistant
- 0 2018
 - Teaching Assistant

Teaching

Programming Languages

^o Teaching Assistant (10-15 hrs/wk)

UW's Programming Languages course covers topics such as type systems, higher-order functions, and double dispatch. - Investigated the use of visual explanations in lectures. (Early work on Theia.)

- Introduced students to UW programming languages research.
- Developed slides weekly explaining new concepts and deep connections to programming language theory.
- Held office hours once a week. Taught section once a week. Graded homework weekly.

Accelerated Honors Math

0 Teaching Assistant (10-15 hrs/wk)

Accelerated Honors Math attracts top UW STEM freshmen and provides a rigorous intro to 100- & 300-level math.

- Facilitated students learning intro calculus, differential equations, and linear algebra from a proof-based perspective.
- Prepared and presented special topics once a week.
- Fostered students' interests in deeper math course material.
- Held office hours twice a week. Taught quiz section once a week. Graded homework weekly.

Work

Linea Labs, Inc.

Software Engineering Intern (40 hrs/wk)

- LineaPy aims to capture, analyze, and transform messy notebooks into data pipelines with just two lines of code.
- Assessed the feasibility and impact of porting existing research prototypes to a production-ready open source tool.
- Created an implementation prototype of Andrew Head's code gathering notebook extension using LineaPy.
- Designed and implemented a SQLAIchemy database migration API for LineaPy using Alembic.
- Presented to the team about user-centered design principles and prototyping.
- Redesigned LineaPy's GitHub README and Linea's internal Notion workspace.

Apple Inc.

0 Formal Verification Intern (40 hrs/wk)

Apple's Formal Verification group proves properties about Apple's SoCs to ensure they are correct and secure.

- Wrote >5,000 lines of code in the Isabelle proof assistant.
- Developed proof-of-concept extensions to existing Isabelle proofs of crucial software running on Apple SoCs.
- Prototyped extension to VSCode Isabelle plug-in for enhanced proof state inspection.
- Presented to management on internship work and helped prepare team for presentation to upper-level management.

University of Washington

MIT CSAIL Postdoc and Graduate Student Council

MIT CSAIL Postdoc and Graduate Student Council

MIT Graduate Application Assistance Program (GAAP)

HCI Social Planning Committee

HCI Social Planning Committee

UW Programming Languages

UW Accelerated Honors Math

June 2017 - August 2017

University of Washington

April 2019 - June 2019

UIST '21

University of Washington September 2017 - June 2018

San Francisco, CA (Remote)

June 2022 - August 2022

Cupertino, CA

July 2019 - September 2019

Intel Corporation

IPAS Undergraduate Technical Intern (40 hrs/wk)

Intel Product Assurance and Security (IPAS) is a research-focused group that seeks to address Intel security threats.

- Designed and coded proof of concept for concolic execution of BIOS to automatically detect security vulnerabilities.
- Presented prototype, symbolic and concolic execution, and internship experience to over 60 members of IPAS. - Learned about UEFI/BIOS, x86 and x86_64 assembly, Intel Security Development Lifecycle, and concolic execution.

Vulcan Robotics

San Mateo, CA

2014-2016

Cofounder (15 hrs/wk)

Completely student-run high school robotics team. 2015-2016 World Championship 2nd Place Winning Alliance Captain. Planned team presentations and delegated speaking roles.

- Evaluated and implemented team organization strategies including long-term planning and competition reflection.
- Used Tableau visualizations to scale scouting protocols from competitions with 16 to 128 participants.

Presentations

- 2022: IEEE VIS Animated Vega-Lite: Unifying Animation with a Grammar of Interactive Graphics (co-presented with Jonathan Zong)
- 2021: PLATEAU Workshop Design Spaces of Domain-Specific Languages
- (co-presented with Jonathan Zong)
- o 2021: MIT HCI Show & Tell Bluefish
- 2020: Bachelor's Thesis Presentation Sidewinder
- o 2019: SPLASH-E Talk Theia
- o 2019: HACKERS Talks Machine Learning, Visualization
- o 2019: UW CSE Research Poster Session Relay. Tied for second place for most impactful research.
- 2019: Stanford Research Conference Poster Presentation Relay (~20% acceptance rate)
- 2018: UW CSE Graduate Research Showcase Poster Session Relay
- 2017: HACKERS Talk Formal Methods
- o 2015: HACKERS Talk Math Education
- o 2015: HACKERS Lightning Talk Vulcan Robotics. Awarded one of the top lightning talks.

Hillsboro, OR

June 2018 - September 2018